Виды источников энергии и их использование. Солнце – главный источник энергии на Земле

12.06.2019

Основной источник — энергия

Основные источники энергии, используемые человеком.  

Основной источник энергии, используемый автотрофа-ми, — Солнце. Образно говоря, автотрофы являются кормильцами биосферы: они не только питаются сами, но и кормят (своим телом) других. Поэтому их называют продуцентами. Биомасса, создаваемая ими, называется первичной.  

Основными источниками энергии на нефтеперерабатывающих заводах являются тепло, водяной пар и электроэнергия. Для получения всех видов энергии расходуется до 6 % перерабатываемой нефти, причем половина этого — количества сжигается на ТЭЦ, а другая — в трубчатых печах технологических установок. В связи с этим одной из важнейших проблем нефтегазоперфаботки является повышение технико-экономической эффективности всех технологических процессов.  

Основным источником энергии для всех процессов, происходящих в биосфере, является солнечное излучение. Атмосфера, окружающая Землю, слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения поглощается и рассеивается атмосферой. Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей.  

Основным источником энергии, аккумулируемой в аденозинтрифосфате (АТФ), является глюкоза. В клетках глюкоза с помощью ферментных систем сначала подвергается бескислородному расщеплению до двух молекул молочной кислоты СН3СН (ОН) СООН. Энергия, выделяемая при расщеплении одной молекулы глюкозы при гликолизе, аккумулируется в двух вновь образованных молекулах АТФ. По мере необходимости АТФ гидролизуется на аденозиндифосфат (АДФ) и фосфорную кислоту с выделением около 10 ккал тепловой энергии. Молочная кислота подвергается дальнейшему кислородному расщеплению в последовательных окислительно-восстановительных реакциях до углекислого газа и водорода, который, в свою очередь, окисляется кислородом воздуха до воды. Энергия, освобождаемая при этом, расходуется на регенерацию АТФ, то есть на присоединение к АДФ третьего остатка фосфорной кислоты. В результате полного расщепления двух молекул молочной кислоты выделяется энергия, достаточная для синтеза 36 молекул АТФ из АДФ.  

Основным источником энергии на Земле является Солнце.  

Основными источниками энергии, потребляемой промышленностью, являются горючие ископаемые и продукты их переработки, энергия воды, биомасса и ядерное топливо. В значительно меньшей степени используются энергия ветра, солнца, приливов, геотермальная энергия. Мировые запасы основных видов топлива оцениваются в 1 28 — Ю13 тонн УТ, в том числе, ископаемые угли 1 12 — Ю13 тонн, нефть 7 4 — Ю11 тонн и природный газ 6 3 — Ю11 тонн УТ.  

Основным источником энергии (тепла) в процессе азотирования является реакция азотирования, которая дает до 96 % от общего прихода энергии. Электроэнергия, подводимая при разогреве печи, составляет всего 2 — 3 % от общего прихода энергии.  

Основным источником энергии, поступающей на Землю, является Солнце. Солнечное излучение формируется в результате интенсивного взаимодействия с веществом в верхних слоях Солнца и находится с ним в равновесии. Электромагнитное излучение Солнца можно охарактеризовать двумя температурами — энергетической, которая определяется законом Стефана-Больцмана, и спектральной, определяемой из закона Вина. Для равновесного излучения эти температуры равны. Показателем неравновесности излучения может служить разность энергетической и спектральной температур. По мере удаления от поверхности Солнца энергетическая температура падает, а спектральная температура остается без изменения. Таким образом, неравновесность излучения по мере удаления от Солнца возрастает. Поэтому с увеличением расстояния от Солнца создаются более благоприятные условия для процессов самоорганизации, которые протекают в неравновесных условиях. С другой стороны, сложность образуемых систем зависит от температуры. С увеличением расстояния от Солнца температура падает, поэтому существует некоторое оптимальное расстояние, на котором возможно образование систем максимальной сложности. Уровень самоорганизации системы определяется степенью отклонения от равновесного состояния и уровнем сложности. В солнечной системе наиболее оптимальное сочетание названных параметров наблюдается на расстояниях, соответствующих орбите Земли. Таким образом, в Солнечной системе наибольший уровень самоорганизации может быть достигнут на Земле.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа и газовой шапки; давление растворенного газа в нефти в момент выделения газа из раствора; сила тяжести; упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа газовой шапки, давление растворенного газа в нефти в момент выделения газа из раствора, сила тяжести, упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно. Таким образом, энергетические ресурсы нефтеносного пласта характеризуются существующим в нем давлением. Чем выше давление, тем больше при прочих равных условиях запасы энергии и тем полнее может быть использована залежь нефти.  

Основным источником энергии в промышленности, сельском хозяйстве и в других отраслях народного хозяйства служит топливо. В зависимости от физического состояния топливо подразделяется на твердое, жидкое и газообразное.  

Основными источниками энергии для человечества были мускульная сила людей и рабочего скота, а для обогрева жилищ и приготовления пищи использовалась древесина и навоз домашних животных. Однако доля древесины и древесного угля была велика, а мускульная сила человека и животных применялась по-прежнему.  

Основной источник - энергия - Большая Энциклопедия Нефти и Газа, статья, страница 1


Большая Энциклопедия Нефти и Газа Основной источник — энергия Основные источники энергии, используемые человеком.   Основной источник энергии, используемый автотрофа-ми, — Солнце.

Основные источники энергии

Основные источники энергии на службе человеку

Ископаемые виды топлива, такие как нефть, газ и уголь являются основными и чрезвычайно полезными для экономического развития. Однако все эти виды топлива имеют свои недостатки. Уголь является неэффективным. Нефть существует в ограниченных запасах.

Газ, хотя легко перемещать с места на место, может быть опасным, при его утечке. Включение угля, газа, нефти и других видов топлива в выработку электричества есть способ, чтобы сделать их гораздо более универсальными и полезными.

Тепло используется для кипячения воды и производства пара, который в свою очередь вращает винто-подобный механизм называемый турбиной. Турбины соединены с генератором, который вырабатывает электричество.

После электроэнергия полученная в силовой установкой, легко передается от одного места в другое надземные или подземными кабельными линиями. Внутри дома, завода и офиса, электричество снова преобразуется в другие виды энергии с помощью широкого спектра техники. Если у вас есть электрическая печь или тостер, то они преобразует электроэнергию, поставляемую с электростанции обратно в тепловую энергию для приготовления пищи.

Лампы в вашем доме преобразуют электрическую энергию в световую. По данным Министерства энергетики России, мировое потребление электроэнергии, вырастет на 71 процент в период между 2003 и 2030 гг. Около 80 процентов энергии которую мы используем сегодня, происходит от ископаемых видов топлива, но это не может продолжаться долго. Ископаемое топливо закончится рано или поздно.

К счастью, у нас есть альтернативы, основным источникам энергии. Мы можем сделать электричество из энергии ветра, или солнечных батарей.

Мы можем сжигать мусор для производства тепла, которое будет стимулировать электростанцию. Мы можем выращивать так называемые «энергетические культуры» (биомассы), чтобы сжечь в наших электростанциях вместо ископаемого топлива.

И мы можем использовать огромные запасы тепла в заключенные внутри Земли, известные как геотермальная энергия. Вместе, эти источники энергии, известны как возобновляемые источники энергии, потому что они будут длиться вечно (или, по крайней мере до тех пор, пока будет светить Солнце), не иссякая.

Если бы мы могли покрыть только один процент от пустыни Сахара солнечными панелями (площадь чуть меньше, чем Соединенные Штаты Америки), мы могли бы сделать более чем достаточно электроэнергии для всей нашей планеты. Мы также должны быть умнее в том, как мы используем энергию. Это называется энергоэффективность (экономия энергии).

Последовательное развитие возобновляемых источников энергии и технологий будет означать снижение доли централизованной крупной энергетики. Для общества это будет означать независимость от крупных энергетических компаний, а также повышение надежности электроснабжения.

Общий вывод очевиден. Научно-технический прогресс, появление новых технологий и материалов постоянно повышают роль возобновляемых источников энергии, которые уже замещают традиционные, основные источники энергии в значительном объеме. Общественное мнение «сдвигается» в сторону «распределенной энергетики», где основное место займут возобновляемые источники энергии.

Все это приводит к более глубокому изучению и использованию нетрадиционных возобновляемых источников энергии. Основное преимущество возобновляемых источников энергии их неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты.

Основные источники энергии


Ископаемые виды топлива, такие как нефть, газ и уголь являются основными и чрезвычайно полезными для экономического развития. Однако все эти виды топлива имеют свои недостатки. Уголь является неэффективным.

Источники энергии

В основном энергию, используемую в быту и промышленности, мы добываем на поверхности Земли или в ее недрах. Например, во многих слаборазвитых странах жгут древесину для отопления и освещения жилищ, тогда как в развитых странах для получения электроэнергии сжигают различные ископаемые источники топлива - уголь, нефть и газ. Ископаемые виды топлива представляют собой не возобновляемые источники энергии. Их запасы восстановить невозможно. Ученые сейчас изучают возможности использования неисчерпаемых источников энергии.

Ископаемые виды топлива

Уголь, нефть и газ - невозобновляемые источники энергии, которые сформировались из остатков древних растений и животных, обитавших на Земле миллионы лет назад (подробнее в статье «Древнейшие формы жизни«). Эти виды топлива добываются из недр и сжигаются для получения электроэнергии. Однако использование ископаемых источников топлива создает серьезные проблемы. При современных темпах потребления известные запасы нефти и газа будут исчерпаны уже в ближайшие 50 лет. Запасов угля хватит лет на 250. При сжигании этих видов топлива образуются газы, под воздействием которых возникает парниковый эффект и выпадают кислотные дожди.

Возобновляемые источники энергии

По мере роста численности населения (см. статью «Население Земли«) людям требуется все больше энергии, и многие страны переходят к использованию возобновляемых источников энергии - солнца, ветра и воды. Идея их применения пользуется широкой популярностью, так как это - экологически чистые источники, использование которых не наносит вреда окружающей среде.

Гидроэлектростанции

Энергию воды используют на протяжении многих веков. Вода вращала водяные колеса, использовавшиеся для разных целей. В наши дни построены огромные плотины и водохранилища, и вода применяется для выработки электроэнергии. Течение реки вращает колеса турбин, превращая энергию воды в электроэнергию. Турбина связана с генератором, который вырабатывает электроэнергию.

Солнечная энергия

Земля получает громадное количество солнечной энергии. Современная техника позволяет ученым разрабатывать новые методы использования солнечной энергии. Крупнейшая в мире солнечная электростанция построена в пустыне Калифорнии. Она полностью обеспечивает потребности 2000 домов в энергии. Зеркала отражают солнечные лучи, направляя их в центральный бойлер с водой. Вода в нем кипит и превращается в пар, который вращает турбину, связанную с электрогенератором.

Энергия ветра

Энергия ветра используется человеком уже не первое тысячелетие. Ветер надувал паруса и вращал мельницы. Для использования энергии ветра создавались самые разнообразные устройства, предназначенные для выработки электроэнергии и для других целей. Ветер вращает лопасти ветряка, приводящие в действие вал турбины, связанной с электрогенератором.

Атомная энергия

Атомная энергия - тепловая энергия, выделяющаяся при распаде мельчайших частиц материи - атомов. Основным топливом для получения атомной энергии является уран - элемент, содержащийся в земной коре. Многие люди считают атомную энергию энергией будущего, но ее применение на практике создает ряд серьезных проблем. Атомные электростанции не выделяют ядовитых газов, но могут создавать немало трудностей, так как это топливо радиоактивно. Оно излучает радиацию, убивающую все живые организмы. Если радиация попадает в почву или в атмосферу, это влечет за собой катастрофические последствия.

Аварии ядерных реакторов и выбросы радиоактивных веществ в атмосферу представляют собой большую опасность. Авария на ядерной электростанции в Чернобыле (Украина), случившаяся в 1986 г., повлекла за собой гибель многих людей и заражение огромной территории. Радиоактивные отходы угрожают всему живому в течение тысячелетий. Обычно их хоронят ни дне морей, но нередки и случаи захоронения отходов глубоко под землей.

Другие возобновляемые источники энергии

В будущем люди смогут использовать множество различных естественных источников энергии. Например, в вулканических районах разрабатывается технология использования геотермальной энергии (тепла земных недр). Другим источником энергии является биогаз, образующийся при гниении отходов. Он может применяться для отопления жилищ и нагревания воды. Уже созданы приливные электростанции. Поперек устьев рек (эстуариев) нередко возводят плотины. Особые турбины, приводимые в действие приливами и отливами, вырабатывают электроэнергию.

Как сделать ротор Савония:

Ротор Савония представляет собой механизм, применяемый крестьянами в Азии и Африке для подачи воды при ирригации. Чтобы самим сделать ротор, вам потребуются несколько чертежных кнопок, большая пластмассовая бутылка, крышка, две прокладки, стержень длиной 1 м и толщиной 5 мм и два металлических кольца.

Как это сделать:

1. Чтобы сделать лопасти, обрежьте бутылку сверху и разрежьте ее пополам вдоль.

2. С помощью чертежных кнопок прикрепите половинки бутылки к крышке. Соблюдайте осторожность при обращении с кнопками.

3. Приклейте прокладки к крышке и воткните в нее стержень.

4. Приверните кольца к деревянному основанию и поставьте ваш ротор на ветру. Вставьте стержень в кольца и проверьте вращение ротора. Выбрав оптимальное положение половины бутылки, приклейте их к крышке прочным водоотталкивающим клеем.

Основные виды и источники энергии;

Виды и основные характеристики топлива

Топливо - вещество, при сжигании которого выделяется зна­чительное количество теплоты, используемое как источник получе­ния тепловой энергии и как сырье в химической, металлургической и других отраслях промышленности. Топливо, содержащее органи­ческие вещества, называют углеводородным. Путем химической переработки из него получают разнообразные продукты. Различа­ют естественные и искусственные топлива. К естественным отно­сятся ископаемые и растительные топлива, а к искусственным - продукты переработки естественных топлив. Все топлива по агре­гатному состоянию подразделяются на твердые (ископаемые угли, торф, древесина, сланцы), жидкие (нефть, нефтепродукты), газо­образные (природный и попутный газы и др.).

Основной характеристикой топлива является его теплота сго­рания , т. е. количество теплоты, выделяющейся при полном сгора­нии топлива. Различают теплоту сгорания удельную (МДж/кг) и объемную (МДж/м 3).

В состав всех видов топлив входит горючая масса (органи­ческая масса и горючие неорганические вещества: сера, ее соединения и т. д.) и негорючая масса (зола, влага). Чем больше в топливе золы, влаги, тем ниже его теплота сгорания. Чем выше в органической массе содержание углерода и водорода и чем ниже содержание кислорода и азота, тем больше теплота сгорания топ­лива.

Одним из важнейших видов жидких топлив является нефть, которая представляет собой сложную смесь парафиновых, нафте­новых и ароматических углеводородов. В нефти имеются также и неуглево­дородные и минеральные примеси. Органическая часть нефти сос­тоит на 83. 87 % из углерода и на 12. 14 % из водорода. Удель­ная теплота сгорания нефти колеблется от 39,8 до 44 МДж/кг.

Природный газ содержит до 98 % метана. Его объемная тепло­та сгорания составляет в среднем 30. 35 МДж/м 3 . В нефти, нахо­дящейся в недрах Земли, всегда присутствуют растворенные газы, которые при добыче выделяются из нее (попутные газы). Объемная теплота сгорания попутных газов примерно в.1,5 раза выше, чем природного газа, и составляет

50 000. 55 000 кДж/м 3 ,

В нашей стране создана мощная топливно-энергетическая база. Однако быстрый рост различных отраслей народного хозяйства предъявляет все более высокие требования к развитию топливно-энергетической базы страны и предполагает экономное и рацио­нальное использование всех видов топлива при одновременном снижении затрат на их добычу.

Энергетический потенциал нашей планеты включает практи­чески неистощимые в обозримом будущем источники энергии - Солнце, ветер, воды рек и морей - и невосполнимые, связанные с использованием полезных ископаемых - нефти, угля, природно­го газа, торфа и горючих сланцев.

Источники энергии первой группы, за исключением гидроэнер­гии рек, до настоящего времени играют ничтожную роль в мировом энергетическом балансе, а основное количество энергии челове­чество получает, реализуя химическую энергию и частично ядерную энергию различных топлив.

Все технологические процессы в промышленности связаны с за­тратами или выделением энергии. Энергия необходима как для проведения самого технологического процесса, так и для транспор­тировки сырья и готовой продукции, вспомогательных операций (сушка, дробление, фильтрование и т. д.). Потому промышленные предприятия потребляют значительное количество энергии различных видов. В структуре себестоимости, например, химической про­дукции затраты на получение энергии оставляют около 10%, что свидетельствует о высокой энергоемкости химических производств. Энергоемкость различных производств, т. е. расход энергии на изготовление единицы продукции, различается весьма значительно. Наша страна располагает большими энергетическими ресурса­ми, которые позволяют полностью удовлетворить потребности в них всех отраслей народного хозяйства. Однако топливно-энер­гетические ресурсы страны распределены по ее территории нерав­номерно и характеризуются различными экономическими показа­телями их использования (табл. 3.1).

Табл. 3.1.Распределение топливно-энергетических ресурсов на территории России

В промышленности применяются разнообразные виды энергии: электрическая, тепловая, ядерная, химическая и энергия света.

Электрическая энергия в промышленности использу­ется для преобразования в механическую энергию, для осуществле­ния процессов обработки материалов, дробления, измельчения, пе­ремешивания, центрифугирования, для нагревания, электрохими­ческих реакций и электромагнитных процессов.

Электрическую энергию производят гидроэлектростанции, теп­ловые и атомные электростанции. В последние годы успешно ведут­ся работы по непосредственному преобразованию тепловой энергии в электрическую. Всестороннее развитие технической базы всех отраслей народного хозяйства России требует дальнейшего разви­тия электроэнергетики. Большое внимание уделяется электри­фикации основных и вспомогательных процессов, комплексной ме­ханизации и автоматизации производства.

Тепловые электростанции играют доминирующую роль в элект­роэнергетическом балансе нашей страны, на их долю приходится около 80 % всей производимой в России электроэнергии. Проблема совершенствования тепловых электростанций, повышение коэффи­циента их полезного действия имеет большое народнохозяйствен­ное значение.

В России сосредоточено почти 12 % мировых гидроэнергетиче­ских ресурсов. Современный период развития гидроэнергетики характеризуется дальнейшим увеличением мощности строящихся ГЭС и перемещением гидроэнергостроительства на восток страны, где построены самые мощные ГЭС в мире - Братская, Новосибир­ская, Красноярская.

Потенциальная энергия мировых запасов ядерного горючего превосходит в десятки раз потенциальную энергию разведанных запасов угля, нефти и природного газа вместе взятых. В целях экономии и правильного использования природного невозобновляе­мого энергетического сырья необходимо интенсивно развивать атомную энергетику.

Атомные электростанции (АЭС) обладают высоким коэффици­ентом полезного действия. Так, например, при распаде 1 г урана-235 выделяется такое количество тепловой энергии, которое экви­валентно 1000 кВт-ч электроэнергии. Иными словами, при распаде 1 т урана-235 выделяется такое же количество теплоты, что и при сгорании 300 000 т каменного угля.

Тепловая энергия, получаемая при сжигании топлива, широко применяется для проведения многочисленных технологиче­ских процессов (нагревания, плавления, выпарки, сушки, перегон­ки и т. д.), а также в качестве источника теплоты для проведения эндотермических реакций. В качестве теплоносителей могут быть использованы топочные газы, водяной пар, перегретая вода, орга­нические теплоносители.

Химическая энергия связана с выделением теплоты в экзотермических химических реакциях, которая используется для нагрева реагентов, проведения эндотермических химических про­цессов. Например, в производстве водорода из азотно-водородной смеси теплота, выделяющаяся при конверсии метана, используется для проведения реакции конверсии оксида углерода. В производ­стве аммиачной селитры выделяющаяся в результате экзотермиче­ской реакции теплота используется для выпаривания реакционной массы и ее кристаллизации. Химическая энергия используется в гальванических элементах и аккумуляторах, где она преобра­зуется в электрическую. Эти источники энергии характеризуются высоким коэффициентом полезного действия.

Световая энергия используется в промышленности при создании фотоэлементов, фотоэлектрических датчиков, автоматов, а также для реализации большого числа фотохимических процес­сов в технологии синтеза хлористого водорода, реакциях хлориро­вания, бромирования и др. Фотоэлектрические явления, связанные с преобразованием световой энергии в электрическую, исполь­зуются в системах управления и контроля технологических про­цессов. Источником световой энергии является Солнце, где про­исходят атомные реакции синтеза ядер водорода и углерода. Сна­чала использовалась лишь тепловая энергия солнечных лучей. В настоящее время широко известно применение солнечных бата­рей на космических кораблях. Солнечную тепловую энергию в юж­ных районах страны можно использовать для кипячения воды, нагревания жидкостей и даже для плавления металлов (солнеч­ные печи).

Энергия рек занимает значительное место в производстве электроэнергии в России и особенно в странах, богатых гидроре­сурсами. Электроэнергия, вырабатываемая ГЭС, составляет 99,7 % в электроэнергетическом балансе Норвегии, во Франции и Италии - соответственно 50 и 58 %. Однако вследствие бурного развития атомной энергетики доля ГЭС в электроэнергетическом балансе России будет снижаться и составит через 25. 30 лет около 10 %.

Энергия морских приливов - разновидность энер­гии водного потока. Приливы - периодические колебания уровня моря, обусловленные силами притяжения Луны и Солнца в соеди­нении с центробежными силами, развивающимися при вращении систем Земля - Луна и Земля - Солнце. Приливы обладают огром­ной энергией. Высота приливной волны достигает 10. 20 м. Мировой технический потенциал морских приливов составляет около 500 млн т условного топлива в год. Для нашей страны представляет интерес использование этого источника энергии в районах побережья Баренцева, Белого и Охотского морей. Уже сделаны первые иссле­дования на пути к практическому использованию этого источника энергии.

Основные виды и источники энергии


Основные виды и источники энергии; Виды и основные характеристики топлива Топливо - вещество, при сжигании которого выделяется зна­чительное количество теплоты, используемое как источник

В детстве я любила помечтать. В своих мечтах я отправлялась в захватывающие межпланетные путешествия по Солнечной системе. Повзрослев, я оставила эти мечты далеко позади. Однако, мой интерес к неизведанному не угас. Он и подтолкнул меня к расширению кругозора и прочтению различных книг и статей о космосе. Частью этой информации я с удовольствием поделюсь и с вами.

Сравнение планет, входящих в Солнечную систему

Всего насчитывается девять планет.

Меркурий отличается от остальных планет огромной амплитудой температур. Особенностью также является очень быстрое движение по орбите. Отсутствует атмосфера.

Венера вращается в противоположном направлении по сравнению с большинством планет. Ее размеры, а также состав и структура приближены к земным. Однако, температура и давление на ее поверхности в разы превышает земные показатели.

Наш дом - Земля. Ее отличительные особенности:

  • сильное магнитное поле;
  • большая гравитация;
  • наличие гидросферы;
  • наличие жизни;
  • большой показатель плотности;
  • наличие сравнительно большого спутника.

На Марсе крайне низкое давление и большая амплитуда температур.

Следующие четыре планеты: Юпитер, Сатурн, Уран и Нептун. Их можно условно отнести к другой группе – планет-гигантов. Они состоят из газов, в центре их расположено жидкое ядро. Они обладают сильнейшим магнитным полем и вращаются с очень высокой скоростью. Отличительная их особенность – наличие колец и обилие спутников. От планет земной группы они отделены грядой из астероидов.

И самая последняя и отдаленная мини-планета Плутон, которую современные астрономы вычеркивают из числа планет.

Источники энергии на Земле

Все процессы, протекающие на поверхности Земли, подпитываются несколькими источниками энергии.

Основным и самым главным источником энергии для всех процессов на нашей планете, конечно же, является солнечная энергия.

Я считаю, что ее значение просто невозможно переоценить. Что дает нам энергия солнца? Свет, тепло, поддержания жизни всему живому. Говоря об источниках энергии, не стоит забывать и про энергию ветра и воды.

travelask.ru

Основной источник - энергия - Большая Энциклопедия Нефти и Газа, статья, страница 1

Основной источник - энергия

Cтраница 1

Основные источники энергии, используемые человеком.  

Основной источник энергии, используемый автотрофа-ми, - Солнце. Образно говоря, автотрофы являются кормильцами биосферы: они не только питаются сами, но и кормят (своим телом) других. Поэтому их называют продуцентами. Биомасса, создаваемая ими, называется первичной.  

Основными источниками энергии на нефтеперерабатывающих заводах являются тепло, водяной пар и электроэнергия. Для получения всех видов энергии расходуется до 6 % перерабатываемой нефти, причем половина этого - количества сжигается на ТЭЦ, а другая - в трубчатых печах технологических установок. В связи с этим одной из важнейших проблем нефтегазоперфаботки является повышение технико-экономической эффективности всех технологических процессов.  

Основным источником энергии для всех процессов, происходящих в биосфере, является солнечное излучение. Атмосфера, окружающая Землю, слабо поглощает коротковолновое излучение Солнца, которое, в основном, достигает земной поверхности. Некоторая часть солнечного излучения поглощается и рассеивается атмосферой. Поглощение падающей солнечной радиации обусловлено наличием в атмосфере озона, углекислого газа, паров воды, аэрозолей.  

Основным источником энергии, аккумулируемой в аденозинтрифосфате (АТФ), является глюкоза. В клетках глюкоза с помощью ферментных систем сначала подвергается бескислородному расщеплению до двух молекул молочной кислоты СН3СН (ОН) СООН. Энергия, выделяемая при расщеплении одной молекулы глюкозы при гликолизе, аккумулируется в двух вновь образованных молекулах АТФ. По мере необходимости АТФ гидролизуется на аденозиндифосфат (АДФ) и фосфорную кислоту с выделением около 10 ккал тепловой энергии. Молочная кислота подвергается дальнейшему кислородному расщеплению в последовательных окислительно-восстановительных реакциях до углекислого газа и водорода, который, в свою очередь, окисляется кислородом воздуха до воды. Энергия, освобождаемая при этом, расходуется на регенерацию АТФ, то есть на присоединение к АДФ третьего остатка фосфорной кислоты. В результате полного расщепления двух молекул молочной кислоты выделяется энергия, достаточная для синтеза 36 молекул АТФ из АДФ.  

Основным источником энергии на Земле является Солнце.  

Основными источниками энергии, потребляемой промышленностью, являются горючие ископаемые и продукты их переработки, энергия воды, биомасса и ядерное топливо. В значительно меньшей степени используются энергия ветра, солнца, приливов, геотермальная энергия. Мировые запасы основных видов топлива оцениваются в 1 28 - Ю13 тонн УТ, в том числе, ископаемые угли 1 12 - Ю13 тонн, нефть 7 4 - Ю11 тонн и природный газ 6 3 - Ю11 тонн УТ.  

Основным источником энергии (тепла) в процессе азотирования является реакция азотирования, которая дает до 96 % от общего прихода энергии. Электроэнергия, подводимая при разогреве печи, составляет всего 2 - 3 % от общего прихода энергии.  

Основным источником энергии, поступающей на Землю, является Солнце. Солнечное излучение формируется в результате интенсивного взаимодействия с веществом в верхних слоях Солнца и находится с ним в равновесии. Электромагнитное излучение Солнца можно охарактеризовать двумя температурами - энергетической, которая определяется законом Стефана-Больцмана, и спектральной, определяемой из закона Вина. Для равновесного излучения эти температуры равны. Показателем неравновесности излучения может служить разность энергетической и спектральной температур. По мере удаления от поверхности Солнца энергетическая температура падает, а спектральная температура остается без изменения. Таким образом, неравновесность излучения по мере удаления от Солнца возрастает. Поэтому с увеличением расстояния от Солнца создаются более благоприятные условия для процессов самоорганизации, которые протекают в неравновесных условиях. С другой стороны, сложность образуемых систем зависит от температуры. С увеличением расстояния от Солнца температура падает, поэтому существует некоторое оптимальное расстояние, на котором возможно образование систем максимальной сложности. Уровень самоорганизации системы определяется степенью отклонения от равновесного состояния и уровнем сложности. В солнечной системе наиболее оптимальное сочетание названных параметров наблюдается на расстояниях, соответствующих орбите Земли. Таким образом, в Солнечной системе наибольший уровень самоорганизации может быть достигнут на Земле.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа и газовой шапки; давление растворенного газа в нефти в момент выделения газа из раствора; сила тяжести; упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно.  

Основными источниками энергии в пластах являются напор краевой воды, подошвенной воды, газа газовой шапки, давление растворенного газа в нефти в момент выделения газа из раствора, сила тяжести, упругость пласта и насыщающих его нефти, воды и газа. Эти силы могут проявляться раздельно или совместно. Таким образом, энергетические ресурсы нефтеносного пласта характеризуются существующим в нем давлением. Чем выше давление, тем больше при прочих равных условиях запасы энергии и тем полнее может быть использована залежь нефти.  

Основным источником энергии в промышленности, сельском хозяйстве и в других отраслях народного хозяйства служит топливо. В зависимости от физического состояния топливо подразделяется на твердое, жидкое и газообразное.  

Основными источниками энергии для человечества были мускульная сила людей и рабочего скота, а для обогрева жилищ и приготовления пищи использовалась древесина и навоз домашних животных. Однако доля древесины и древесного угля была велика, а мускульная сила человека и животных применялась по-прежнему.  

Страницы:      1    2    3    4

www.ngpedia.ru

Источники энергии на Земле. Движение. Теплота

Источники энергии на Земле

Не все источники энергии равноценны. Одни представляют лишь принципиальный интерес, с другими связано существование цивилизации. Одни источники практически неисчерпаемы, другим придет конец в ближайшие столетия, а то и десятилетия.

Уже несколько миллиардов лет посылает свои живительные лучи на Землю главный опекун нашей планетной системы – Солнце. Этот источник энергии можно смело назвать неисчерпаемым. Каждый квадратный метр земной поверхности получает от Солнца энергию средней мощности около 1,5 кВт; за год это составит около 10 миллионов килокалорий энергии – такое количество тепла дают сотни килограммов угля. Сколько же тепла получает от Солнца весь земной шар? Подсчитав площадь Земли и учитывая неравномерное освещение солнечными лучами земной поверхности, получим около 1014 кВт. Это в 100 тысяч раз больше энергии, которую получают от всех источников энергии на Земле все фабрики, заводы, электростанции, автомобильные и самолетные моторы, короче – в 100 тысяч раз больше мощности энергии, потребляемой всем населением земного шара (порядка миллиарда киловатт).

Однако, несмотря на множество проектов, солнечная энергия используется совершенно незначительно. И правда, подсчет наш дал огромную цифру, – но ведь это количество энергии попадает во все места земной поверхности: и на склоны недоступных гор, и на поверхность океанов, занимающую большую часть земной поверхности, и на пески безлюдных пустынь.

Кроме того, совсем не так уже велико количество энергии, приходящейся на небольшую площадь. А ведь вряд ли целесообразно создавать приемники энергии, простирающиеся на квадратные километры. Наконец, очевидно, что заниматься превращением солнечной энергии в тепло имеет смысл в тех местностях, в которых много солнечных дней.

Интерес к прямому использованию энергии Солнца несколько возрос в последнее время в связи с появившимися возможностями непосредственно превращать солнечную энергию в электрическую. Такая возможность, естественно, весьма привлекательна. Однако до сих пор она реализована в очень незначительной степени.

Сравнительно недавно был обнаружен аккумулятор солнечной энергии у нас над головами – в верхних слоях атмосферы. Оказалось, что кислород на высоте 150–200 км над земной поверхностью вследствие действия солнечного излучения находится в диссоциированном состоянии: его молекулы разбиты на атомы. При объединении этих атомов в молекулы кислорода могло бы выделиться 118 ккал/моль энергии. Каков же общий запас этой энергии? В слое толщиной 50 км на указанной высоте запасено 1013 ккал – столько, сколько освобождается при полном сгорании нескольких миллионов тонн угля. В СССР такое количество угля добывается за несколько дней. Хотя энергия диссоциированного на больших высотах кислорода непрерывно возобновляется, здесь мы опять сталкиваемся с проблемой малой концентрации: устройство для практического использования этой энергии не так-то легко придумать.

Вернемся к обсуждению источников энергии. Воздушные массы земной атмосферы находятся в непрерывном движении. Циклоны, бури, постоянно дующие пассатные ветры, легкие бризы – многообразно проявление энергии потоков воздуха. Энергию ветра использовали для движения парусных судов и в ветряных мельницах еще в древние века. Полная среднегодовая мощность воздушных потоков для всей Земли равна не много не мало 100 млрд. кВт.

Однако не будем возлагать больших надежд на ветер как источник энергии. Мало того, что источник этот неверен – к скольким несчастьям и разочарованиям приводили ветряные штили в век парусных судов, – он обладает тем же недостатком, что и солнечная энергия: количество энергии, выделяющееся на единицу площади, относительно невелико; лопасти ветряной турбины, если создать такую для производства энергии в заводских масштабах, должны были бы достигнуть практически неосуществимых размеров. Не менее существенным недостатком является непостоянство силы ветра. Поэтому энергия ветра, или, как его поэтично называют, голубого угля, используется лишь в маленьких двигателях – «ветряках». Во время ветра они дают электроэнергию сельскохозяйственным машинам, освещают дома. Если образуется излишек энергии, он запасается в аккумуляторах (так называются хранители электроэнергии). Эти излишки можно использовать в затишье. Конечно, полагаться на ветряк нельзя – он может играть лишь роль вспомогательного двигателя.

Даровым источником энергии является также движущаяся вода – приливная волна океанов, непрерывно наступающая на сушу, и потоки речных вод, текущих к морям и океанам.

Мощность всех рек земного шара измеряется миллиардами киловатт, используется же всего примерно 40 млн. кВт, т.е. пока порядка 1 %. Потенциальная мощность рек СССР достигает 400 млн. кВт, а из них используется пока около 20 млн. кВт.

Если бы мы лишились угля, нефти и других источников энергии и перешли бы только на белый уголь – энергию рек, то при полном использовании этой энергии (предполагая, что построены все возможные гидроэлектростанции на всех реках земного шара) пришлось бы уменьшить потребление энергии на земном шаре. Расход энергии на земном шаре в настоящее время превышает миллиард киловатт – одной лишь гидроэнергии человечеству уже сейчас только-только хватило бы.

Ну, а приливная волна? Ее энергия весьма значительна, хотя примерно в десять раз меньше энергии рек. Увы, эта энергия пока что используется лишь в самой незначительной степени: пульсирующий характер приливов затрудняет ее использование. Однако советские и французские инженеры нашли практические пути к преодолению этой трудности. Теперь приливная электростанция обеспечивает выдачу гарантированной мощности в часы максимального потребления. Во Франции построена и уже работает опытная ПЭС Сен Мало, а в СССР строится станция в Кислой Губе в районе Мурманска. Эта последняя послужит опытом для сооружения проектируемых мощных ПЭС в Лумбовском и Мезенском заливах Белого моря. Во Франции к 1965 г. будет пущена приливная станция мощностью в 240 тыс. кВт.

Вода в океанах на больших глубинах имеет температуру, отличающуюся от температуры поверхностных слоев на 10–20°. Значит, можно построить тепловую машину, нагревателем которой в средних широтах явился бы верхний слой воды, а холодильником – глубинный. КПД такой машины будет 1–2 %. Но это, конечно, тоже очень неконцентрированный источник энергии.

Солнце, воздух и вода – даровые источники энергии*16. Даровые в том смысле, что использование их энергии не влечет за собой уменьшения каких бы то ни было земных ценностей. Работа ветряков не уменьшает количества воздуха на земном шаре, работа гидроэлектростанций не уменьшает глубины рек, не используются запасы земных веществ и при работе солнечных машин.

В этом смысле описанные до сих пор источники энергии обладают большим преимуществом по сравнению с топливом. Топливо сжигается. Использование энергии каменного угля, нефти, дерева – это невозвратимое уничтожение земных ценностей. Было бы очень заманчиво осуществить фотохимический двигатель, т.е. получать энергию при помощи механизма фотосинтеза, который обеспечивает накопление энергии топлива. Зеленый лист любого растения – это завод, который из молекул воды и углекислого газа благодаря энергии солнечных лучей вырабатывает органические вещества с большим запасом энергии в молекулах. Этот процесс в растениях имеет малый КПД (~1 %), но и при этом ежегодно запасаемая растениями энергия равна 2·1015 кВт·ч, т.е. в сотни раз превышает годовую выработку энергии всеми электростанциями мира. Механизм фотосинтеза до конца еще не разгадан, но нет сомнения, что в будущем удастся не только осуществить фотосинтез в искусственных условиях, но и повысить при этом его КПД. Однако в этой области человек пока не может состязаться с природой и вынужден пользоваться ее дарами, сжигая дрова, нефть, уголь.

Каковы же запасы топлива на земном шаре? К обычному топливу, т.е. такому, которое горит от поднесенного огня, относятся уголь и нефть. Их запасы на земном шаре крайне малы. При современном расходовании нефти ее разведанные запасы придут к концу уже к началу следующего тысячелетия. Запасов каменного угля несколько больше. Количество угля на Земле выражают цифрой в десять тысяч миллиардов тонн. Килограмм угля при сгорании дает 7000 ккал тепла. Таким образом, общие энергетические запасы угля измеряются цифрой порядка 1020 ккал. Это в тысячи раз больше годового потребления энергии.

Запас энергии на тысячу лет надо признать очень малым. Тысяча лет – это много только по сравнению с длительностью человеческой жизни, а человеческая жизнь – ничтожное мгновение по сравнению с жизнью земного шара и с временем существования цивилизованного мира. Кроме того, потребление энергии на душу населения непрерывно растет. Поэтому, если бы запасы горючего сводились к нефти и углю, то положение дел на Земле с энергетическими запасами следовало бы считать катастрофическим.

В начале сороковых годов нашего века была доказана практическая возможность использования совершенно нового вида горючего, называемого ядерным. Мы располагаем значительными запасами ядерного горючего.

Здесь не место останавливаться на устройстве атома и его сердцевины – атомного ядра, на том, каким образом можно извлечь внутреннюю энергию из атомных ядер. Выделение ядерной энергии может быть осуществлено лишь в значительных масштабах на так называемых атомных электростанциях. Ядерная энергия выделяется в виде тепла, которое используется совершенно так же, как на электростанциях, работающих на каменном угле.

В настоящее время мы можем выделять энергию в промышленных количествах из двух элементов – урана и тория. Особенность ядерного горючего, являющаяся его основным достоинством, – это исключительная концентрированность энергии. Килограмм ядерного горючего отдает энергии в 2,5 миллиона раз больше, чем килограмм каменного угля. Поэтому, несмотря на относительно малую распространенность этих элементов, их запасы на земном шаре в энергетическом выражении довольно значительны. Примерные расчеты показывают, что запасы ядерного горючего существенно больше, чем запасы каменного угля. Однако приобщение к топливу урана и тория не решает принципиальную задачу освобождения человечества от энергетического голода – запасы минералов в земной коре ограничены.

Но уже сейчас можно указать поистине безграничный источник энергии. Речь идет о так называемых термоядерных реакциях. Они возможны лишь при сверхвысоких температурах порядка двадцати миллионов градусов. Эта температура пока что достигается лишь при атомных взрывах.

Сейчас перед исследователями стоит задача получения высоких температур не взрывным путем, и первые попытки достигнуть температуры в миллион градусов увенчались успехом.

Если физики сумеют работать с необходимыми высокими температурами в десятки миллионов градусов, получаемыми не взрывным путем, то управляемая реакция слияния атомных ядер водорода (она и носит название термоядерной) станет возможной. При этой реакции будет выделяться огромная энергия на килограмм горючего. Для того чтобы обеспечить сейчас человечество энергией на один год, достаточно выделить термоядерную энергию путем переработки десятка миллионов тонн воды.

В мировом океане запасено столько термоядерной энергии, что ее хватит для покрытия всех энергетических потребностей человечества в течение времени, превышающего возраст солнечной системы. Вот уж действительно безграничный источник энергии.

Следующая глава >

fis.wikireading.ru

Внутренние и внешние источники энергии Земли

Как внутри Земли, так и на ее поверхности происходят процессы, которые определяют формирование рельефа.

Каждому региону на Земле, на суше и на дне океана свойствен собственный тектонический режим, определяющей развитие рельефа. Эндогенный фактор образования рельефа включает тектонические, сейсмические и вулканические явления. До глубины 400 - 700 км прослеживаются особенно крупные разрывные нарушения, гипоцентры землетрясений, магматические очаги, с которыми связаны вулканические процессы. На этих глубинах происходят переходы вещества из твердого состояния в пластичное и даже жидкое (и обратно), разогревание и плавление его в результате радиоактивного распада, гравитационная и химическая дифференциация веществ.

Эндогенные процессы (от греч. endon - внутри и genes - рожденный) бывают как активными и длительными, например, в вулканических поясах, так и импульсивными. Внешние процессы, называемые экзогенные (от греч. ехо - вне и genes - рожденный), протекают на поверхности литосферы благодаря воздействию солнечной энергии, силе тяжести, физико-химическим изменениям горных пород и осадков, перемещению веществ из недр Земли в вертикальном и горизонтальном направлениях. Накопление осадков на дне морей и океанов, перемещение рыхлого материала на суше - также результат экзогенных процессов.

Основной источник энергии внешних сил планеты - это солнечная энергия. Из нее на экзогенные процессы расходуется около 60%, остальная часть возвращается во внеземное пространство. Солнечная энергия поглощается Мировым океаном. Это определяет высокую степень подвижности его вод: течений, вихрей и др. Но и суше достается значительная доля энергии, которая не только расходуется, но и идет на накопление, уплотнение и преобразование осадков и минералов. Немалая часть ее сохраняется в биосфере Земли. Помимо солнечной энергии на создание форм рельефа расходуется энергия падающих на Землю космических тел - метеоритов. Нетрудно заметить, что у эндогенных и экзогенных процессов имеются общие источники энергии: солнечное излучение, вращение планеты и физико-химические превращения вещества. Однако экзогенные процессы теснее связаны с географическими и, прежде всего, с ландшафтно-климатическими условиями. Для каждого ландшафтного пояса характерны свои действующие экзогенные процессы. Установлено, что главным фактором в распределении и свойствах экзогенных процессов является непосредственное соотношение тепла и влаги. Это энергетическая основа многих географических процессов на поверхности Земли, в том числе процессов образования рельефа. Распределение тепла и влаги на поверхности планеты никогда не было постоянным. Это зависело от величины угла наклона оси вращения планеты, которая менялась от 15 - 20° до 30 - 40°. Сейчас этот угол составляет около 27°.

На проблему происхождения и развития рельефа суши и дна морей ученые смотрят по-разному. Одни полагают, что океаны возникли одновременно с появлением планеты. Однако они постоянно сокращают свою площадь, поскольку идет рост континентов. Другие считают, что океаны возникли при разрыве и дрейфе первичных материков, когда пространство между ними стало заполняться водой. Третьи предполагают, что океаны возникли на месте существовавших некогда континентов в результате «океанизации» Земли.

geographyofrussia.com

Источники энергии

В основном энергию, используемую в быту и промышленности, мы добываем на поверхности Земли или в ее недрах. Например, во многих слаборазвитых странах жгут древесину для отопления и освещения жилищ, тогда как в развитых странах для получения электроэнергии сжигают различные ископаемые источники топлива - уголь, нефть и газ. Ископаемые виды топлива представляют собой не возобновляемые источники энергии. Их запасы восстановить невозможно. Ученые сейчас изучают возможности использования неисчерпаемых источников энергии.

Ископаемые виды топлива

Уголь, нефть и газ - невозобновляемые источники энергии, которые сформировались из остатков древних растений и животных, обитавших на Земле миллионы лет назад (подробнее в статье «Древнейшие формы жизни«). Эти виды топлива добываются из недр и сжигаются для получения электроэнергии. Однако использование ископаемых источников топлива создает серьезные проблемы. При современных темпах потребления известные запасы нефти и газа будут исчерпаны уже в ближайшие 50 лет. Запасов угля хватит лет на 250. При сжигании этих видов топлива образуются газы, под воздействием которых возникает парниковый эффект и выпадают кислотные дожди.

Возобновляемые источники энергии

По мере роста численности населения (см. статью «Население Земли«) людям требуется все больше энергии, и многие страны переходят к использованию возобновляемых источников энергии - солнца, ветра и воды. Идея их применения пользуется широкой популярностью, так как это - экологически чистые источники, использование которых не наносит вреда окружающей среде.

Гидроэлектростанции

Энергию воды используют на протяжении многих веков. Вода вращала водяные колеса, использовавшиеся для разных целей. В наши дни построены огромные плотины и водохранилища, и вода применяется для выработки электроэнергии. Течение реки вращает колеса турбин, превращая энергию воды в электроэнергию. Турбина связана с генератором, который вырабатывает электроэнергию.

Солнечная энергия

Земля получает громадное количество солнечной энергии. Современная техника позволяет ученым разрабатывать новые методы использования солнечной энергии. Крупнейшая в мире солнечная электростанция построена в пустыне Калифорнии. Она полностью обеспечивает потребности 2000 домов в энергии. Зеркала отражают солнечные лучи, направляя их в центральный бойлер с водой. Вода в нем кипит и превращается в пар, который вращает турбину, связанную с электрогенератором.

Энергия ветра

Энергия ветра используется человеком уже не первое тысячелетие. Ветер надувал паруса и вращал мельницы. Для использования энергии ветра создавались самые разнообразные устройства, предназначенные для выработки электроэнергии и для других целей. Ветер вращает лопасти ветряка, приводящие в действие вал турбины, связанной с электрогенератором.

Атомная энергия

Атомная энергия - тепловая энергия, выделяющаяся при распаде мельчайших частиц материи - атомов. Основным топливом для получения атомной энергии является уран - элемент, содержащийся в земной коре. Многие люди считают атомную энергию энергией будущего, но ее применение на практике создает ряд серьезных проблем. Атомные электростанции не выделяют ядовитых газов, но могут создавать немало трудностей, так как это топливо радиоактивно. Оно излучает радиацию, убивающую все живые организмы. Если радиация попадает в почву или в атмосферу, это влечет за собой катастрофические последствия.

Аварии ядерных реакторов и выбросы радиоактивных веществ в атмосферу представляют собой большую опасность. Авария на ядерной электростанции в Чернобыле (Украина), случившаяся в 1986 г., повлекла за собой гибель многих людей и заражение огромной территории. Радиоактивные отходы угрожают всему живому в течение тысячелетий. Обычно их хоронят ни дне морей, но нередки и случаи захоронения отходов глубоко под землей.

Другие возобновляемые источники энергии

В будущем люди смогут использовать множество различных естественных источников энергии. Например, в вулканических районах разрабатывается технология использования геотермальной энергии (тепла земных недр). Другим источником энергии является биогаз, образующийся при гниении отходов. Он может применяться для отопления жилищ и нагревания воды. Уже созданы приливные электростанции. Поперек устьев рек (эстуариев) нередко возводят плотины. Особые турбины, приводимые в действие приливами и отливами, вырабатывают электроэнергию.

Как сделать ротор Савония:

Ротор Савония представляет собой механизм, применяемый крестьянами в Азии и Африке для подачи воды при ирригации. Чтобы самим сделать ротор, вам потребуются несколько чертежных кнопок, большая пластмассовая бутылка, крышка, две прокладки, стержень длиной 1 м и толщиной 5 мм и два металлических кольца.

Как это сделать:

1. Чтобы сделать лопасти, обрежьте бутылку сверху и разрежьте ее пополам вдоль.

2. С помощью чертежных кнопок прикрепите половинки бутылки к крышке. Соблюдайте осторожность при обращении с кнопками.

3. Приклейте прокладки к крышке и воткните в нее стержень.

4. Приверните кольца к деревянному основанию и поставьте ваш ротор на ветру. Вставьте стержень в кольца и проверьте вращение ротора. Выбрав оптимальное положение половины бутылки, приклейте их к крышке прочным водоотталкивающим клеем.

www.polnaja-jenciklopedija.ru

Сравните Землю с другими планетами Солнечной системы. Что является основным источником энергии для процессов,

происходящихна поверхности Земли?

  • Следить
  • Отметить нарушение!

Ответы и объяснения

+ − × • ÷ ± = ≡ ≠ ~ ≈ ≃ < ≤ ≤ > ≥ ∝ ∑ ∞ √ { } ⟨ ⟩ ¼ ½ ¾ ƒ ′ ″ ∂ ∫ ∬ Δ ∇

Геометрия

° ∠ ∡ ∟ ⦜ ⊿ ○ △ □ ▱ ◊ ∥ ∦ ⊥ ≅

¬ ∧ ∨ ∀ ∃ ◻ ◊ ⊢ ⊨ ∴

Множества

∅ ∈ ∉ ⊆ ⊈ ⊂ ⊄ ⊇ ⊉ ⊃ ⊅ ∩ ∪ ∖ ⊖ ⊕ ⊗ ⊙

Верхние и нижние индексы

Нижние индексы

₁ ₂ ₃ ₄ ₅ ₆ ₇ ₈ ₉ ₀ ₊ ₋ ₍ ₎ ₐ ₓ

Верхние индексы

¹ ² ³ ⁴ ⁵ ⁶ ⁷ ⁸ ⁹ ⁰ ⁺ ⁻ ⁽ ⁾ ᵃ ᵇ ⁿ ˣ °

Греческий алфавит

Строчные

α β γ δ ε ζ η θ ι κ λ μ ν ξ ο π ρ σ τ υ φ χ ψ ω

Прописные

Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω

↑ ↓ ↕ → ← ↔ ⇑ ⇓ ⇕ ⇒ ⇐ ⇔

Европейские символы

À Â Ç É È Î Ï Ô Û Ÿ Œ Æ ß Ä Ö Ü à â ç é è ê î ï ô û ù ÿ œ æ ä ö ü

Другие символы

⊤ ⊣ ⊥ ⊢ € £ ¥ ¢ ® ™ ‰

koreniz.ru

Глава 3. Солнце - главный источник энергии для поверхности Земли. Энергия и жизнь

Глава 3. Солнце - главный источник энергии для поверхности Земли

О солнце, ты живот и красота природы,

Источник вечности и образ божества!

Тобой живет земля, жив воздух, живы воды,

Душа времен и вещества!

А. П. Сумароков

Из большого числа возможных источников энергии, имеющихся у нашей планеты, первое место, несомненно, следует отдать солнечному потоку, который поддерживает необходимые температурные условия Земли (чтобы мы не испарились, перегревшись, или не замерзли, переохладившись).

Культ Солнца был развит у большинства народов, населяющих Землю, и недаром поток солнечной энергии составляет основу всех потоков энергии на нашей планете (рис. 3).

К внешней границе тропосферы подводится поток солнечной радиации примерно 1000 ккал/(см2·год) (или около 2 ккал/(см2·мин)). Из-за шарообразности Земли на единицу поверхности внешней границы тропосферы в среднем поступает четвертая часть - примерно 250 ккал/(см2· год). Треть этого потока отражается, и, следовательно, Земля поглощает 167 ккал/(см2· год). Из них 59 ккал/(см2· год) поглощает атмосфера, и на долю поглощения земной поверхностью приходится 108 ккал/(см2·год). Эта энергия «перерабатывается» различными способами. В виде длинноволнового инфракрасного излучения с поверхности Земли уходит 36 ккал/(см2· год).

Рис. 3. Укрупненная схема энергетического баланса Земли

(составляющие энергетического баланса, ккал/(см2 ·год)) [Будыко, 1984].

Благодаря парниковому эффекту поверхность Земли получает около 72 ккал/(см2·год) радиационной энергии, часть которой - 60 ккал/ (см2·год) - идет на испарение воды (нижний кружок на рис. 3), а часть - 12 ккал/ (см2·год) - возвращается в атмосферу через турбулентные потоки воздуха.

Основной передатчик тепла между космосом и Землей - атмосфера - получает от Земли «свои» 60 ккал / (см2·год) за счет конденсации водяных паров (верхний кружок на рис. 3), упомянутые 12 ккал/(см2·год)- за счет турбулизации и непосредственно от радиации Солнца - 59 ккал/(см2 · год). Итог: приход равен 131 ккал/ (см2·год). И соответственно расход тепла через эффективное излучение - той же величине -131 ед. Вместе с результирующими 36 ккал/(см2·год) длинноволнового излучения от земной подстилки мы и получим расход в целом - 167 ккал/ (см2·год), в точности равный приходу энергии с потоком солнечной радиации.

Таким образом, на нашей планете работает «система жизнеобеспечения» с определенным интервалом температур. Среднегодовая температура составляет 14,25°С, при этом в Северном полушарии средняя температура 15,2°С, а в Южном - только 13,3°С из-за высокой отражательной способности ледового панциря Антарктиды.

Из 72 ккал, поглощаемых каждым квадратным сантиметром земной поверхности в год, океан «забирает» почти вдвое больше, чем суша, - 90 и 50 ккал соответственно. Это объясняется большой теплоемкостью воды и ее подвижностью. Океаносфера является мощным аккумулятором солнечного тепла, она накапливает в 21 раз больше того количества тепла, которое за год поступает от Солнца ко всей поверхности Земли (7,6 · 1023 ккал по сравнению с потоком в 3,65 · 1020 ккал/год). Поэтому ее взаимодействием с атмосферой определяется погода на земном шаре. Тепло, поглощаемое в тропиках, переносится течениями в высокие широты, смягчая климат умеренных и полярных областей. Один Гольфстрим несет в 22 раза больше тепла, чем все реки суши.

В целом гидросфера работает под влиянием накачки солнечной энергии как гигантская тепловая машина. Можно даже оценить ее коэффициент полезного действия. «Чистая» энергия движения, перемещения воздушных и водных масс, т. е. та часть, которая может совершать нужную нам работу, оказывается совсем небольшой: для атмосферы (со средней скоростью ветра, несколько превышающей 10 м/с у поверхности Земли)- всего 1,6% от поглощаемого солнечного тепла, а для океаносферы (со средней скоростью течения во всей толще вод, равной 3,2 см/с) - еще на пару порядков ниже. Конечно, одна из наиболее серьезных энергетических затрат - это затрата энергии на физический круговорот воды, прежде всего на испарение. Ее тоже можно оценить по уже приведенным данным. Около 55% - таков расход энергии, дошедшей до земной поверхности, на испарение.

В атмо- и гидросфере сложное переплетение циклов, различающихся по пространству и времени существования, определяет и мгновенное состояние - погоду в любой точке Земли и климат в каждой зоне. Климат есть результат усреднения прошлых погод каждого дня в каждой точке. Не затрагивая очень спорного, но злободневного вопроса о прогнозировании погоды, подчеркнем только, что само понятие о климате было введено еще учеными Древней Греции. Слово это греческого происхождения (klima) и означает «наклон». То есть еще в то время греки хорошо понимали, что климат местности зависит от среднего наклона солнечных лучей к поверхности Земли. Молодцы, древние греки! Представление о первоисточнике движения у них было самое верное.

Следующая глава >

bio.wikireading.ru

У каждой стихии есть свое энергетическое поле: у воздуха, воды, огня и, конечно, земли. О последней и пойдет речь. Земля всегда ассоциируется с плодородием, пищей, торжеством жизни. Именно на ней мы выращиваем различные культуры, строим дома. Она, в конце концов, обладает силой притяжения!

Поэтому ее энергия настолько сильная и мощная, что способная зарядить всех людей. Энергия земли дает нам возможность ощутить связь со своими предками, получить их поддержку и помощь.

Энергия из земли исходит постоянно. Но, разумеется, не вся она доходит до нас. Тем более, если учесть, что в последнее время мы стали мало ходить пешком, мало работать на улице. Вспомните, как жили наши предки! Вся их жизнь была тесно связана с сельскохозяйственными, земледельческими работами. Они постоянно находились на природе. Поэтому и были всегда такими здоровыми, сильными и выносливыми. Их питала сама земля!

Получение энергии из земли возможно разными способами:

Энергия от земли может находиться в двух видах. Первая – это свободная энергия из земли. Именно ее мы и получаем, когда ходим по земле, работаем в огороде. Вторая – это потенциальная энергия земли. Она и обуславливает существующее и давно доказанное притяжение (гравитацию). Без нее жизнь на земле вряд ли была бы такой, каковой она является. И эту потенциальную энергию земля не может отдать человеку и другим объектам окружающей природы. В противном случае начнется хаос.

А как же происходит использование энергии земли?

Этот процесс довольно прост и понятен. Во время нашего контакта с землей ее энергия поступает в наш организм через специальные энергетические потоки. Как известно, через тело человека проходят два главных продольных канала: восходящий и нисходящий. Через последний поступает энергия Солнца, а через первый – энергия земли. Затем она распространяется по всему организму по более мелким каналам. Вся эта сеть подобна капиллярной, нервной. Все устроено так, что энергия попадает в каждый, даже самый отдаленный «кусочек» тела. Энергии земли идут на питание, развитие каждой клеточки. Таким образом, организм оздоравливается, обновляются все его структуры на молекулярном уровне.

Однако используется энергия и земли и в другом русле – в духовном. Она дает нам гармонию, спокойствие. Делает нас более добрыми, более отзывчивыми, более милосердными. У женщин эта энергия пробуждает материнский инстинкт. Ведь земля – кормилица, как и мать для своего дитя.

Как отражается на человеческой жизни недостаток энергии земли?

Конечно, он характеризуется только отрицательными признаками:

  • Подавленность настроения.
  • Человек перестает радоваться жизни и получать удовольствие от нее.
  • Снижение полового влечения, получения удовольствия в сексуальной сфере.
  • Материальные проблемы.
  • Неудачи в реализации планов, желаний.

В целом человек теряет свою стабильность, устойчивость во многих сферах своей жизнедеятельности. Он становится раздражительным, неуверенным в себе, пассивным, бессильным даже перед небольшими трудностями.

И помните, что все мы – дети земли. И она всегда поможет Вам, даст Вам энергию. Просто постарайтесь больше времени «общаться» с ней. Земля сродни матери: чем больше Вы с ней, тем сильнее Вы становитесь. Вы начинаете чувствовать огромную поддержку, заботу и спокойствие.

Электричество - из почвы.

Получение бесплатного электричества в домашних условиях!

Основные источники энергии на службе человеку

Ископаемые виды топлива, такие как нефть, газ и уголь являются основными и чрезвычайно полезными для экономического развития. Однако все эти виды топлива имеют свои недостатки. Уголь является неэффективным. Нефть существует в ограниченных запасах.

Газ, хотя легко перемещать с места на место, может быть опасным, при его утечке. Включение угля, газа, нефти и других видов топлива в выработку электричества есть способ, чтобы сделать их гораздо более универсальными и полезными.

Электрическую энергии обычно получают на электростанциях при сжигании топлива. Около 40 процентов электроэнергии, в России производится из угля. Внутри электростанции, уголь сжигается в огромной печи, чтобы освободить энергию в виде тепла.

Тепло используется для кипячения воды и производства пара, который в свою очередь вращает винто-подобный механизм называемый турбиной. Турбины соединены с генератором, который вырабатывает электричество.

Самое замечательное в электричестве, то что этот вид энергии универсален. Практически любой вид топлива может быть превращен в электричество .

После электроэнергия полученная в силовой установкой, легко передается от одного места в другое надземные или подземными кабельными линиями. Внутри дома, завода и офиса, электричество снова преобразуется в другие виды энергии с помощью широкого спектра техники. Если у вас есть электрическая печь или тостер, то они преобразует электроэнергию, поставляемую с электростанции обратно в тепловую энергию для приготовления пищи.

Лампы в вашем доме преобразуют электрическую энергию в световую. По данным Министерства энергетики России, мировое потребление электроэнергии, вырастет на 71 процент в период между 2003 и 2030 гг. Около 80 процентов энергии которую мы используем сегодня, происходит от ископаемых видов топлива, но это не может продолжаться долго. Ископаемое топливо закончится рано или поздно.

К счастью, у нас есть альтернативы, основным источникам энергии. Мы можем сделать электричество из энергии ветра, или солнечных батарей.

Мы можем сжигать мусор для производства тепла, которое будет стимулировать электростанцию. Мы можем выращивать так называемые "энергетические культуры" (биомассы), чтобы сжечь в наших электростанциях вместо ископаемого топлива.

И мы можем использовать огромные запасы тепла в заключенные внутри Земли, известные как геотермальная энергия. Вместе, эти источники энергии, известны как возобновляемые источники энергии, потому что они будут длиться вечно (или, по крайней мере до тех пор, пока будет светить Солнце), не иссякая.

Если бы мы могли покрыть только один процент от пустыни Сахара солнечными панелями (площадь чуть меньше, чем Соединенные Штаты Америки), мы могли бы сделать более чем достаточно электроэнергии для всей нашей планеты. Мы также должны быть умнее в том, как мы используем энергию. Это называется энергоэффективность (экономия энергии).

Сегодня большинство электроэнергии поступает из далеко расположенных электростанций, и передается по кабельным линиям. При передачи электроэнергии из одного места в другое теряется примерно две трети энергии. Другими словами, если вы сжигаете три тонны угля на электростанции, вы тратите две тонны на то, что-бы доставить электроэнергию потребителям. Вот почему здания в будущем, необходимо, делать с собственным подключением к электросети, например, солнечные батареи или небольшие ветряные турбины на крышах.

Последовательное развитие возобновляемых источников энергии и технологий будет означать снижение доли централизованной крупной энергетики. Для общества это будет означать независимость от крупных энергетических компаний, а также повышение надежности электроснабжения.

Общий вывод очевиден. Научно-технический прогресс, появление новых технологий и материалов постоянно повышают роль возобновляемых источников энергии, которые уже замещают традиционные, основные источники энергии в значительном объеме. Общественное мнение «сдвигается» в сторону «распределенной энергетики», где основное место займут возобновляемые источники энергии.

Все это приводит к более глубокому изучению и использованию нетрадиционных возобновляемых источников энергии. Основное преимущество возобновляемых источников энергии их неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты.

Ещё больше интересных статей

Menu ГЛАВНАЯ НАЙТИ МАСТЕРА КАЛЬКУЛЯТОР НОВОСТИ БИЗНЕСА — земельные участки — недвижимость — покупка недвижимости — аренда продажа ОХРАНА ТРУДА и ТБ СТРОИТЕЛЬСТВО — фундаменты — гидроизоляция — стены и фасад — кровля и мансарда — теплоизоляция — окна и двери — полы и напольные покрытия — отделочные работы — инженерные системы — строительные материалы — вентиляция и кондиционирование — потолок — системы отопления — дома и коттеджи — конструкция окон — конструкция дверей — ремонтные работы — системы водоснабжения — проектирование — технологии строительства БАНИ САУНЫ — особенности русской бани — строительство и материалы ПЕЧИ КАМИНЫ — печи, котлы, камины АРХИТЕКТУРА — архитектура древности — современная архитектура — дизайн интерьера — ландшафтный дизайн — декорирование — мебель и обстановка — стили интерьера ТЕХНОЛОГИИ — научно-технический прогресс — библиотека строителя — инженерное оборудование — станки — оборудование и инструмент — услуги — строительная техника — энергосбережение О ПРОЕКТЕ — Пользовательское соглашение — Политика конфиденциальности — Использование cookie КАРТА САЙТА

Солнце – единственная звезда нашей планетной системы. Почти идеальная сфера, которая больше Земли в 110 раз и в 330 тысяч раз тяжелее! Среднее расстояние от Земли до Солнца – примерно 150 млн. километров, а это значит, что свет от него до нашей планеты доходит за 8 минут 20 секунд.

Но даже без знания всех этих фактов, еще в доисторические времена, многие народы почитали Солнце Богом. Но и если отбросить всю эту божественную составляющую, кто сегодня будет спорить, что без него по-прежнему не представима жизнь на Земле. Да чего там, когда Солнце скрыто за облаками, то и жизнь кажется какой-то унылой.

Солнце способно дарить не только тепло и свет, но и радость жизни.

Но воспевая, изображая, обожествляя и исследуя наше светило, человечество также всегда стремилось использовать его. Лучи света – это же даровая энергия, причем бесплатная и постоянная. Так за чем же дело стало...

Оказывается, использовать эти лучи можно лишь двумя способами – по крайней мере, на сегодняшний день. Первый – это получать электричество с помощью, например, кремниевых панелей. И второй способ – использовать непосредственно солнечное тепло. Каким образом? Для этого придумано очень много оригинальных и необычных устройств.

Солнечные панели.

Их часто, хотя и неправильно, именуют солнечными батареями. Солнечные панели уже давно хорошо узнаваемые и распространённые во всем мире, а их область применения – от крыш домов до космических станций, от судов до автомобилей.


Солнечные панели и солнечные коллекторы на крыше одного дома.

Солнечные панели превращают свет в электрический ток, в то время как солнечные коллекторы превращают его же в тепло. Основой панелей служат кремниевые пластинки. К ним подключаются аккумуляторы, инвертор, контроллер и иногда многое другое – проще говоря, устройство это не из простых.

Солнечные коллекторы.

Коллекторы же сделаны из обычного металла и к ним подведена лишь только жидкость-теплоноситель, которая циркулируя через коллектор, нагревается. В итоге эта жидкость кипятит, скажем, бак с водопроводной водой. Устройство это, как видим, гораздо проще, хотя и технологичней чем, скажем, выкрашенный краской бачок летнего дачного душа.

Плоский солнечный коллектор состоит из следующих элементов:

  • кофр, в который заключены все детали устройства;
  • абсорбер – элемент, поглощающий солнечные излучения;
  • термоизолирующий слой;
  • теплоноситель;

Это четыре основные части коллектора. Но конечно главное здесь не их количество, а то каким образом все они вместе работают.

Давайте сначала узнаем, как изготавливают солнечные коллекторы. Сперва сваривают абсорбер, который служит основой будущему устройству. Он похож на батарею, только наоборот – батарея излучает тепло от внутреннего источника, а абсорбер забирает тепло от внешнего источника – Солнца.

Проверяют готовые абсорберы на наличие микротрещин путем помещения их в небольшую емкость с жидкостью. Для этого применяется простой дедовский способ – если при давлении в 10 атмосфер, на поверхности детали не появляются пузырьки, то она готова к использованию.

Затем одобренный абсорбер покрывают специальным селективным покрытием (оптическое покрытие, способное поглощать солнечный свет). В специальной вакуумной камере происходит ионно-плазменное распыление, в результате которого абсорбер покрывается на вид слегка радужной синеватой тонкой пленкой, состоящей из нескольких слоев, каждый из которых имеет разный коэффициент преломления.

В итоге, в результате такого физического явления, как интерференция достигаются необходимые физические свойства. Волны, поступающие на поверхность и излучающие – как бы складываются и, собственно, излучение становится минимальным. Получаемое покрытие обладает двумя важными свойствами – поглощение энергии солнечного излучения и минимальное собственное тепловое излучение.

Затем абсорбер помещают в пластиковый кофр с термоизоляцией, накрывают сверху прозрачным стеклом и коллектор готов. Естественно, сердце всего этого устройства – абсорбер и специальное прикрытие, без которого солнечный коллектор, как автомобиль без топлива. Именно это покрытие способно удерживать до 95% солнечной энергии, переводя её в тепло.

Солнечные коллекторы – это простейший способ нагревать воду. Ничего особенного не требуется – только само устройство и Светило, а дальше всё произойдет само собой. Но на этом механизмы, которые используют энергию солнца, не заканчиваются.

Солнечный парус.

Одно из самых гениальных и амбициозных «солнечных» устройств было изобретено в одном из российских научных институтов. Казалось бы, если существуют космические корабли, то у них должны быть и паруса. Именно эта мысль натолкнула отечественных ученых на изобретение солнечного паруса – устройства, использующего для перемещения в космосе обыкновенный солнечный свет.

Принцип действия солнечного паруса действительно напоминает работу обычных морских парусов. Как мы знаем, их наполняет ветер, что позволяет судно двигаться. Солнечный же парус наполняют фотоны света, бомбардируя зеркальную поверхность паруса и отражаясь от неё, они сообщают ему импульс, что позволяет такому кораблю в условиях космоса лететь, причем с всевозрастающей скоростью. Есть только два важных условия – корабль должен быть как можно меньше, а парус – как можно больше.

Есть также солнечные коллекторы, которые часто путают с панелями, хоть это два совершенно разных устройства. Действительно, они оба работают от Солнца, но отличаются друг от друга, как двигатель внутреннего сгорания от двигателя водородного.


Блестящая поверхность солнечного паруса.

Материал, из которого сделан парус – тончайшая полимерная пленка толщиной всего пару микрон. Вся сила, которая создается площадью солнечного паруса, составляет всего на всего 4 грамма. Но при постоянном длительном воздействии, можно добиться ускорения, которое способно привести к скоростям, близким к скорости света!

Такие паруса и прицепленные к ним миниатюрные космические аппараты хотели когда-то использовать для полета на Марс. Весь путь должен был занять 500 дней, причем без применения топлива для движения, поскольку всё делает Солнце.

Существовал и другой вариант. Расположить такие паруса на орбите Земли и отражать солнечный свет на ночные города. Это привело бы к существенно экономии электроэнергии, да и светло было бы почти как днем.

Но, к сожалению, оказавшись в космосе, космический аппарат так и не смог развернуть все лепестки солнечного паруса. Но идея жива по сей день, и очень соблазнительна благодаря своей простоте и перспективности.

Солнечная печь.

В небольшом французском городке Фонт Ромео на юге Франции расположено необычное здание с очень простым и лаконичным названием – «Солнечная печь». Выбор места для строительства этого здания был не случаен, ведь именно в этих местах круглый год практически гарантировано: либо ясное небо, либо небольшая облачность. Здесь также почти никогда не бывает дождей и пасмурной погоды.

Здание было возведено в 70-х годах прошлого столетия и представляет собой действительно большую солнечную печь – второе название строения. Но даже без официальных громких эпитетов, глядя на эту фантастическую необычность, дух захватывает.

Вообще в мире существует всего две большие солнечные печи. И, что примечательно, вторая расположена в Узбекистане. И несмотря на огромное расстояние между ними, принцип работы обеих печей одинаковый.


Здание «Солнечная печь» во Франции.

Одни зеркала (гелиостаты) отражают солнечный свет, а другие зеркала (концентраторы) фокусируют лучи в одной точке, в которой в результате достигается температура более 3000 градусов Цельсия! Чтобы стало понятно, какое это пекло, скажем, что в природе практически не существует материала, который бы нельзя было расплавить в солнечной печи.

Большая солнечная печь Франции – здание с параболическим зеркалом (гелиоконцентратором), напротив которого находиться поле с зеркальными квадратами (гелиостатами). Размер каждого из них 7x6 метров, а общая площадь составляет более 2800 квадратных метров. Задача гелиостатов очень простая – они отображают солнечный свет на большое параболическое зеркало, фактически посылая на него огромный солнечный зайчик.

Парабола здания размером 50х40 метров, состоит из 9000 зеркал, каждое из которых индивидуально сориентировано с помощью четырех винтов. Во время строительства более двух лет ушло лишь на то, чтобы сфокусировать каждое зеркало под нужным углом. Это позволило достичь мощности в 1 Мегават – именно столько способны дать собранные от нее в пучок солнечные лучи.

В здании Солнечной печи расположены лаборатории с миниатюрными печами. Здесь ученые проводят бесконечные эксперименты и плавят под воздействием солнечных лучей самые разные материалы. Такие печи способны расплавить что угодно – дерево, камень и даже сталь. Если сила солнца настолько очевидна в малых печах, то можно себе только представить, что же будет в фокусе большого параболического зеркала.

Конечно, этого можно добиться и в обычных печах, однако в солнечной печи это происходит за секунды. Кроме того, раскаляются образцы от солнца, а значит, сплавы получаются без примесей – чистейшие металлы, керамика, композиты. И самый важный аргумент – за энергию (солнечный свет) никто ничего не платит.

Солнце – основа любой энергии на нашей планете.

Солнце – это первый самый мощный и по-прежнему самый доступный источник энергии на нашей планете. Его согревающее тепло может ощутить каждый – стоит в ясный день только протянуть руку или посмотреть вверх.

Различные устройства способны усилить световое излучение многократно. Но кроме уже известных нам солнечных панелей, коллекторов, концентраторов и парусов, по сути, все источники энергии на Земле – это тоже Солнце. Каменный уголь образован из древних растений, а они никогда бы не выросли без живительных лучей нашей единственной звезды. Тоже самое говорят и о нефти с газом. И даже футуристичные ветряки не стали бы вращаться, если бы не ветер, за который, как и за весь климат на Земле отвечает наше светило.

В погоне за всё более и более востребованными энергоресурсами, человечество уже изыскало множество путей. Но возможно всё, что нам надо – это перестать смотреть вниз в толщи земли, а обратить свой взгляд наверх – на наше Солнце.