Палитры цветов системах цветопередачи rgb cmyk. Конспект урока по информатике на тему "Формирование цвета в системах цветопередачи RGB, CMYK и HSB (Палитры цветов в системах цветопередачи RGB, CMYK и HSB)" (9 класс). Палитры цветов в системах цветопередач

04.03.2020

Прежде чем мы перейдем непосредственно к описанию цветовых моделей компьютерной графики, давайте немного обсудим основные понятия ЦВЕТА. А на видео вы сможете посмотреть где найти и как поменять цветовую модель в фотошопе.

  • Как мы воспринимаем цвет?

Прежде чем мы перейдем к цветовым палитрам CMYK и RGB, давайте разберемся с тем, как мы воспринимаем цвет. Мы можем видеть предметы только потому, что они излучают или отражают электромагнитное излучение, то есть СВЕТ.

В зависимости от длины волны СВЕТА мы видим тот или иной ЦВЕТ.

Длина волны измеряется в нанометрах.

  • Каким длинам волн соответствуют 7 цветов радуги?

СВЕТ можно разделить на 2 категории:

  1. Излучаемый свет это свет, выходящий из источника, например, Солнца, лампочки или экрана монитора.
  2. Отраженный свет это свет, “отскочивший” от поверхности объекта. Когда мы смотрим на какой-либо предмет, не являющийся источником света, мы видим именно отраженный цвет.


Монитор излучает свет, поэтому такой способ получения цвета называют системой аддитивных цветов. Бумага – отражает свет, поэтому полученный таким образов цвет можно описать при помощи системы субтрактивных цветов.

  • Цветовая модель RGB

Это субтрактивная цветовая модель, которая использует в своем составе три основных цвета:

Красный (Red)

Зеленый (Green)

Синий (Blue)

Её название происходит от первых букв английских названий цветов. Смешивая эти цвета, мы можем получить практически любой оттенок.

RGB используют мониторы, телефоны, и даже фотоаппараты, поэтому для компьютерной графики, предназначенной для использования на вышеперечисленных устройствах, нужно использовать именно цветовой режим RGB.

  • Как смешиваются основные цвета RGB


Cиний + красный = пурпурный

Зелёный+ красный= жёлтый

Зелёный + синий = циановый

При смешении всех трёх цветовых компонентов мы получаем белый цвет.

  • Основные цвета палитры RGB

Основные цвета в RGB это: Красный, Синий, Зеленый


  • Дополнительные цвета палитры RGB

Дополнительные цвета получаются при смешивании двух соседних основных цветов.

К ним относятся: Пурпурный, Голубой, Желтый


  • Противоположные цвета палитры RGB

При смешивании противоположных цветов получается белый цвет, т.к. составляющими противоположного цвета являются два недостающих цвета (например, Красный + Голубой (синий + зеленый)).

Смешивание 2-х противоположных цветов, это по сути то же самое, что смешивание 3-х основных. В обоих случаях получится белый. Это важно знать каждому, кто всерьез занимается цветовой коррекции.


  • Цветовая модель CMYK

Голубой (cyan)

Пурпурный (magenta)

Желтый (yellow)

Черный (Keycolor)

Cубтрактивная схема формирования цвета, используемая прежде всего в полиграфии . Эта система, в отличие от RGB, используется для печати, поэтому если вы приносите макет в полиграфию, вас, как правило просят предоставлять его именно с использованием цветового режима CMYK.

  • Как смешиваются цвета CMYK

Голубой + пурпурный = синий цвет, пурпурный + желтый = ярко-красный, желтый + голубой = зеленый.

Голубой, пурпурный и желтый образуют грязно-коричневый цвет. Черный делает любой цвет более темным, отсутствие красителя дает белый.


Cyan – Голубой, Magenta – Пурпурный, Yellow – Желтый;


Белый свет может быть разложен с помощью оптических приборов (например, призмы) или природных явлений (радуга) на различные цвета спектра: красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.

Хорошо известна фраза, которая помогает легко запомнить последовательность цветов в спектре видимого света: каждый охотник желает знать, где сидит фазан.

Рис. 3.7.

Человек воспринимает свет с помощью цветовых рецепторов (так называемых колбочек), находящихся на сетчатке глаза. Наибольшая чувствительность колбочек приходится на красный, зеленый и синий цвета, которые являются базовыми для человеческого восприятия. Сумма красного, зеленого и синего цвета воспринимается человеком как белый цвет, их отсутствие - как черный, а различные их сочетания - как многочисленные оттенки цветов.

Палитра цветов в системе цветопередачи RGB. С экрана монитора человек воспринимает цвет как сумму излучения трех базовых цветов: красного, зеленого и синего. Такая система цветопередачи называется RGB, по первым буквам английских названий цветов (Red - красный, Green - зеленый, Blue - синий).

Цвета в палитре RGB формируются путем сложения базовых цветов, каждый из которых может иметь различную интенсивность. Цвет палитры Color можно определить с помощью формулы (3.3):

При минимальных интенсивностях всех базовых цветов получается черный цвет, при максимальных интенсивностях - белый цвет. При максимальной интенсивности одного цвета и минимальной двух других - красный, зеленый и синий цвета. Наложение зеленого и синего образует голубой цвет (Cyan), наложение красного и зеленого цвета - желтый цвет (Yellow), наложение красного и синего цвета - пурпурный цвет (Magenta).

Таблица 3.4

Формирование цветов в системе цветопередачи RGB


В системе цветопередачи RGB палитра цветов формируется путем сложения красного, зеленого и синего цветов.

При глубине цвета в 24 бита на кодирование каждого из базовых цветов выделяется по 8 бит. В этом случае для каждого из цветов возможны N = 2 8 = 256 уровней интенсивности. Уровни интенсивности задаются десятичными (от минимальной - 0 до максимальной - 255) или двоичными (от 00000000 до 11111111) кодами (табл. 3.5).

Таблица 3.5

Кодировка цветов при глубине цвета 24 бита

Палитра цветов в системе цветопередачи CMYK. При печати изображений на принтерах используется палитра цветов в системе CMY. Основными красками в ней являются Cyan - голубая, Magenta - пурпурная и Yellow - желтая.

Цвета в палитре CMY формируются путем наложения красок базовых цветов. Цвет палитры Color можно определить с помощью формулы (3.4), в которой интенсивность каждой краски задается в процентах:

Напечатанное на бумаге изображение человек воспринимает в отраженном цвете. Если на бумагу краски не нанесены, то падающий белый свет полностью отражается и мы видим белый лист бумаги. Если краски нанесены, то они поглощают определенные цвета. Цвета в палитре CMYK формируются путем вычитания из белого цвета определенных цветов.

Нанесенная на бумагу голубая краска поглощает красный и отражает зеленый и синий свет, и мы видим голубой цвет. Нанесенная на бумагу пурпурная краска поглощает зеленый и отражает красный и синий свет, и мы видим пурпурный цвет. Нанесенная на бумагу желтая краска поглощает синий и отражает красный и свет зеленый, и мы видим желтый цвет.

Смешав две краски, мы получим базовые цвета в системе цветопередачи RGB. Если нанести на бумагу пурпурную и желтую краски, то будет поглощаться зеленый и синий свет и мы увидим красный цвет. Если нанести на бумагу голубую и желтую краски, то будет поглощаться красный и синий свет и мы увидим зеленый цвет. Если нанести на бумагу пурпурную и голубую краски, то будет поглощаться зеленый и красный свет и мы увидим синий цвет.

Рис. 3.8.

Смешение трех красок - голубой, желтой и пурпурной - должно приводить к полному поглощению света, и мы должны увидеть черный цвет. Однако на практике вместо черного цвета получается грязно-бурый цвет. Поэтому в цветовую модель добавляют еще один, истинно черный цвет. Так как буква В уже используется для обозначения синего цвета, для обозначения черного цвета принята последняя буква в английском название черного цвета Black, т.е. К. Расширенная палитра получила название CMYK.

Таблица 3.6

Формирование цветов в системе цветопередачи CMYK


В системе цветопередачи CMYK палитра цветов формируется путем наложения голубой, пурпурной, желтой и черной красок.

Система цветопередачи RGB применяется в мониторах компьютеров, в телевизорах и других излучающих свет технических устройствах.

Система цветопередачи CMYK применяется в полиграфии, так как напечатанные документы воспринимаются человеком в отраженном свете. В струйных принтерах для получения изображений высокого качества используются четыре картриджа, содержащие базовые краски системы цветопередачи CMYK.

Рис. 3.9.

Палитра цветов в системе цветопередачи HSB. Система цветопередачи HSB использует в качестве базовых параметров Hue (Оттенок цвета), Saturation (Насыщенность) и Brightness (Яркость). Параметр Hue позволяет выбрать оттенок цвета из всех цветов оптического спектра, начиная от красного цвета и кончая фиолетовым (Н = 0 - красный цвет, Н = 120 - зеленый цвет, Н = 240 - синий цвет, Н = 360 - фиолетовый цвет). Параметр Saturation определяет процент «чистого» оттенка и белого цвета (S = 0% - белый цвет, S = 100% - «чистый» оттенок). Параметр Brightness определяет интенсивность цветов (минимальное значение В = 0 соответствует черному цвету, максимальное значение В = 100 соответствует максимальной яркости выбранного оттенка цвета).

В системе цветопередачи HSB палитра цветов формируется путем установки значений оттенка цвета, насыщенности и яркости.

В графических редакторах обычно имеется возможность перехода от одной модели цветопередачи к другой. Это можно сделать как с помощью мыши, перемещая указатель по цветовому полю, так и вводя параметры цветовых моделей с клавиатуры в соответствующие текстовые поля.

Цветовые справочники PANTONE®. Отображение цвета зависит от многих факторов. Способы передачи цвета на мониторе (система цветопередачи RGB) и бумаге (система цветопередачи CMYK) не могут однозначно соответствовать. В свою очередь цветопередача разных мониторов может значительно отличаться друг от друга, также различается цветопередача при печати на различных типах бумаги.

Фактическим стандартом в области идентификации цветов являются цветовые справочники фирмы Pantone. Pantone является разработчиком и производителем технологических решений в области выбора цвета и точной цветовой коммуникации. Уже более 40 лет имя Pantone известно во всем мире как универсальный цветовой язык для общения заказчиков, дизайнеров и производителей полиграфической, текстильной и прочей продукции. Идентификация цветов распространяется не только на изображения, выведенные на бумагу, но и на экран. Пантонные справочники - это набор листов с тестовой печатью с указанием числовых значений цвета в системе RGB или CMYK.

Существуют различные варианты справочников с образцами печати на обычной, мелованной, глянцевой или матовой бумаге.

При подготовке изображения для печати на недорогих массовых мониторах цвета будут искажены. Воспользовавшись справочником, надо указать нужные значения цвета. Цвета, полученные в результате печати, должны соответствовать цветам в справочнике.

Рис. 3.10.

Имея цветовые справочники, можно откалибровать монитор. Надо нарисовать в программе верстки прямоугольники, закрасив их цветами согласно цветовому справочнику, а затем, используя регулировки монитора или выбирая различные профили в программах верстки, попытаться привести в соответствие цвета на экране к цвету справочника. Практически все современные видеокарты поставляются с драйверами, позволяющими производить настройку цветопередачи.

Естественно, что такая калибровка будет достаточно приблизительной. Для правильной калибровки монитора, сканера и принтера используются специальные устройства - калибраторы. Калибраторы устанавливаются перед экраном монитора и подключаются к компьютеру с помощью USB-порта.

Контрольные вопросы

  • 1. В каких природных явлениях и физических экспериментах можно наблюдать разложение белого света в спектр?
  • 2. Как формируется палитра цветов в системе цветопередачи RGB? В системе цветопередачи CMYK? В системе цветопередачи HSB?
  • 3. Для чего необходимы цветовые справочники PANTONE?
  • 4. Для чего необходимы калибраторы?

Задания для самостоятельного выполнения

3.8. Задание с кратким ответом. Определить цвета, если заданы интенсивности базовых цветов в системе цветопередачи RGB. Заполнить таблицу.

3.9. Задание с кратким ответом. Определить цвета, если на бумагу нанесены краски в системе цветопередачи CMYK. Заполнить таблицу.

Формирование цвета

С = 0, М = 0, Y = 0

В основе многих инструментов Photoshop работающих с цветом лежи модель HSB без ясного представления о её устройстве трудно настроить качественный рабочий процесс по обработки изображений. Внесению ясности в этот вопрос посвящена эта статья.

Цветовая модель HSB

Я уже обращался к теме устройства цветовой модели HSB, когда говорил о коррекции цвета с помощью « ». Между тем появилась необходимость остановиться на этой теме более подробно в связи с намечающимся выходом серии статьей посвященных коррекции цвета с первой из которых можете познакомиться здесь. Ибо большинство работающих с цветом «инструментов» имеют в своей основе именно эту цветовую модель.

И так, приступим: HSB аббревиатура английских слов Hue, Saturation, Brightness в переводе на русский Тон, Насыщенность и Яркость — три координаты этой цветовой модели. Определимся с этими понятиями дабы избежать разночтений в дальнейшем:

Тон – собственно цвет, его выбор в данной цветовой модели осуществляется поворотом по цветовому кругу на определённый градус.

Точка отсчета 0 градусов находится в середине красного спектра. 60 градусов желтый цвет, 120 зелёный, 180 циан, 240 синий, 300 пурпурный (маджента) и возвращаемся в исходную точку — 360о красный цвет.

Насыщенность – интенсивность выбранного (хроматического) цвета, то есть отличие от равного ему по яркости (ахроматического) серого цвета. В HSB определяется расстоянием в процентах от цента круга 0% нейтрально серый цвет до 100% край круга – наиболее насыщенный «чистый цвет».

Яркость – параметр определяющий количество света, отраженного от объекта, окрашенного в определённый цвет. Измеряется в процентном отношении. 0% минимальное отражение, любой цвет с минимальной яркостью становится чёрным. 100% максимальное отражение — белый цвет.

Оперируя этими определениями легко графически представить цветовую модель HSB в виде цилиндра в качестве высоты которого выступает яркость (B), радиус — насыщенность (S) и длина окружности тон (H).

Палитра выбора цвета (Color Picker) в Photoshop

Вооружившись этими понятиями обратимся к палитре выбора цвета в Photoshop, наиболее наглядно иллюстрирующую принцип выбора цвета. Вызвать которую можно двойным киком по полю цвета в палитре инструментов.

Клацнув верхний квадрат получаем возможность вызова палитры для изменения цвета переднего плана, нижний соответственно позволит изменить цвет фона.

Подробно познакомиться с устройством этой палитры вы можете, используя «волшебную» кнопку F1 во время работы с программой.

Первое на что обращаешь внимание открытии Color Picker — большое квадратное поле, которое представляет собой ничто иное как срез уже знакомого цилиндра от центра до края.

Передвигая мишень выбора внутри этого поля по вертикали, мы регулируем яркостную составляющую. Двигая её по горизонтали — изменяем значение насыщенности. При этом сам цвет никак не меняется, — за этот параметр отвечает радужная полоса с права.

Она представляет собой разрезанный и выпрямленный по красному цвету, который является началом отсчета (0о), цветовой круг. Ползунки, находящиеся с двух сторон полосы, позволяют менять угол поворота по цветовому кругу, несмотря на то что передвигаются они вверх-вниз, тем самым указывая нужный цвет.

Можно «прогуляться» по цветовому кругу, установив максимальные значения для большей наглядности, насыщенности и яркости S, B -100% менять только значения для угла поворота (Н) выбранный «чистый», цвет будет показан в верхней части окошка просмотра.

Чтобы получить нейтрально серый 50% цвет нужно значение насыщенности снизить до 0% яркость установить в 50%. значения тона при этом не играют никакой роли

Поработайте с этой палитрой изменяйте параметры HSB посмотрите, что происходит с цветом. Переключитесь на параметр насыщенности S установив чек бокс на него, посмотрите как изменится окно выбора и полоса тона, мало того изменятся и их назначения, проделайте ту же операцию с яркостью.

Ориентируйтесь на изменения параметров в полях HSB при перемещении мишени и ползунков, это поможет понять, что происходит с цветом. Через небольшое время, проведённое за этими экспериментами вы сможете уяснить для себя как взаимодействуют параметры Hue, Saturation, Brightness и какой вклад делает каждый из них в формировании цвета.

Эти знания помогут вам в работе с цветом в фотошопе так как движки и ползунки отвечающие за изменения тона насыщенности и яркости встречаются во многих инструментах программы. Столкнувшись с ними во время работы, вы будете представлять каких изменений стоит ожидать на картинке корректируя тот или иной параметр. На этом я заканчиваю надеюсь статься была полезна для вас.

Посмотрите вокруг, что вы видите? Вы видите предметы, стол, стул, солнце или море. Задумывались ли вы, каким образом все это многообразие воспринимается? Свет – это электромагнитное излучение, это волна, которая распространяется в пространстве, так же как и звук и другие волны, которые мы не ощущаем.

В процессе восприятия и обработки участвуют две стороны, предмет, на который мы смотрим и собственно человеческий глаз, а также мозг, обрабатывающий информацию, полученную через глаза.

Давайте разберем, как же мы видим цвет. В сетчатке человеческого глаза находятся рецепторы колбочки и палочки. Всего в глазу располагается около 130 миллионов палочек и 7 миллионов колбочек. Распределение рецепторов на сетчатке неравномерно: в области желтого пятна преобладают колбочки, а палочек очень мало; к периферии сетчатки, наоборот, число колбочек быстро уменьшается и остаются одни только палочки. Колбочки, отвечают за восприятие цвета, палочки в свою очередь за сумеречное зрение. Например, ночью вы не видите цвета, вы видите все серым, потому что работают палочки, а днем работают и колбочки и палочки.

За счет чего работают зрительные рецепторы? Пигмент Родопсин разлагается под действием света в палочках, в колбочках эту роль выполняет пигмент Йодопсин.

Цветовые модели

Цветовая модель - это система представления широкого диапазона цветов и основе ограниченного числа доступных красок в полиграфии или цветовых каналов в мониторах).

По принципу действия все цветовые модели разделяются на четыре класса: аддитивные, субтрактивные, перцепционные и колориметрические, хотя последние часто относят к перцепционным моделям. Рассмотрим их подробнее.

Аддитивная цветовая модель (RGB)

Давайте разберем природу цвета, отталкиваясь от физиологии зрения. Различают три типа «колбочек», проявляющих наибольшую чувствительность к трем основным цветам видимого спектра:

· красно-оранжевому (600 – 700 нм);

· зеленому (500 – 600 нм);

· синему (400 – 500 нм).

Таким образом, для восприятия любого цвета, наш мозг смешивает эти три цвета, учитывая еще один параметр - интенсивность

Рассматриваемый класс цветовых моделей представлен единственной моделью, получившей распространение на практике. В основе этой модели лежит тот факт, что большинство цветов видимого спектра можно получить путем смешения трех цветов, называемых первичными. Этими цветами являются красный (Red), зеленый (Green) и синий (Blue) , a модель, соответственно, получила название RGB. Когда все три компоненты принимают максимальное значение, получается яркий белый цвет. Одинаковые нулевые значения образуют абсолютно черный цвет (точнее, отсутствие света), а одинаковые ненулевые значения соответствуют шкале серого цвета. Сочетания компонент, где их значения не равны, образуют соответствующий цветовой тон. При этом попарное смешение первичных цветов образует вторичные цвета: голубой (Cyan), пурпурный (Magenta) и желтый (Yellow). Первичные и вторичные цвета относятся к базовым цветам.

Математически цветовую модель RGB удобнее всего представлять в виде куба. В этом случае каждому цвету однозначно можно сопоставить точку внутри куба, соответствующую значениям координат X (Red), Y (Green) и Z (Blue). Тогда направление вектора, исходящего из начала координат, однозначно определяет цветность, а его модуль выражает яркость. Несмотря на простоту и наглядность цветовой модели RGB, она имеет два существенных недостатка: аппаратная зависимость (например, использование различных люминофоров и его элементарное старение в мониторах) и ограниченный цветовой охват (невозможность получения всех цветов видимого спектра).

Субтрактивные цветовые модели (CMY и CMYK)

Как формируется цвет предмета? Ответ прост, дневной свет, попадая на предмет частично поглощается, а частично отражается, вот этот отраженный спектр и видит наш глаз. Видимыми являются волны, лежащие в диапазоне от 760 до 380 миллимикрон. Ниже на рисунке представлено соответствие цвета и его длины волны.

С этой точки зрения, белым является такой цвет, который отражает полностью падающий на него свет, а черным – который поглощает весь свет.

Для описания отраженного от объекта цвета используется субтрактивная цветовая модель. Субтрактивные цвета, в отличие от аддитивных, получаются путем поглощения (вычитания - subtract) одного из первичных цветов из белого цвета, что соответствует физике процессов поглощения и отражения света от поверхности объекта:

Белый - красный = голубой;

Белый - зеленый = пурпурный;

Белый - синий = желтый.

Таким образом, для описания этих процессов используется модель CMY, в которой используется три основных субтрактивных цвета, а именно голубой (Cyan), пурпурный (Magenta) и желтый (Yellow).

В результате при смешении двух субтрактивных красок результирующий цвет затемняется (положено больше краски - поглощено больше света). Смешивание равных значений трех компонент дает оттенки серого цвета. Белый цвет получается при отсутствии всех цветов (отсутствии краски), тогда как их присутствие в полном объеме теоретически дает черный цвет. Однако в реальном технологическом процессе получение черного цвета путем смешения трех основных (вторичных) цветов на бумаге не эффективно. И на это имеется две причины. Во-первых, практически невозможно создать идеально чистые пурпурные, голубые и желтые краски. В результате при смешении этих цветов получается не чистый черный цвет, а грязно-коричневый. Во-вторых, неэкономный расход красок на создание черного цвета и это при том, что любые цветные краски дороже обычных черных.

Как следствие, на практике широкое распространение получила иная субтрактивная цветовая модель, называемая CMYK и использующая дополнительную, четвертую, черную краску. Заметим, что в названии модели используется буква К (последняя буква в слове BlaK (черный) ), чтобы избежать путаницы, т.к. с буквы В в английском языке начинается и слово Blue (синий). Хотя иногда букву К трактуют как первую букву в слове Key (ключ, ключевой), т.к. эта краска является главной в процессе цветной печати и последней наносится на бумагу.

Цветовая модель CMYK имеет те же ограничения, что и RGB-модель - аппаратная зависимость и ограниченный цветовой диапазон. Причем она даже более аппаратно-зависима и цветовой диапазон еще уже, чем у RGB-модели, т.к. цветные красители имеют худшие характеристики по сравнению с люминофором в мониторах. Например, она не может воспроизводить яркие насыщенные цвета, а также ряд специфических цветов, таких как металлический и золотистый.

Об экранных цветах, которые невозможно воссоздать при печати, говорят, что они лежат вне цветового охвата модели CMYK. Для предотвращения таких ситуаций обычно используют комплекс специальных мер, включающий выявление и исключение (заменой близким) несоответствующих цветов еще на этапе создания и редактирования изображений или расширением цветового охвата модели путем добавления новых или плашечных цветов (плашечными называются цвета или краски, созданные с помощью специальных технологий и на основе использования для каждого цвета уникальных красителей или чернил). Например, к краскам CMYK добавляются еще зеленая и оранжевая краски (шестицветная печать), что позволяет существенно расширить диапазон воспроизводимых цветов. Еще один способ, возможно, наиболее эффективный, заключается в использовании систем управления цветом - CMS (color management system).

Перцепционные цветовые модели (HSB и другие)

Для устранения аппаратной зависимости, присутствующей в аддитивных и субтрактивных цветовых моделях, были разработаны ряд перцепционных (интуитивных) цветовых моделей, в основу которых положено раздельное восприятие цветности и
яркости света, как воспринимает свет глаз человека. Прототипом большинства цветовых моделей, использующих эту идею, является HSV-модель, на основе которой позже появились HSB, HSL и другие модели. Общим для них является то, что цвет в них задается не в виде смеси трех основных цветов, а путем задания двух компонентов (например, в модели HSB это цветовой тон - Hue, и насыщенность - Saturation). Третий параметр во всех этих моделях различными способами задает яркость изображения и обозначается как В (Brightness - в модели HSB), L (Lightness - в HSL) или V (Value - в HSV).

Модель HSB или ее ближайший аналог - HSL - представлены в большинстве современных графических редакторов. И именно модель HSB, также представленная в Photoshop, наиболее точно соответствует способу восприятия цветов человеческим глазом (из уже рассмотренных моделей), и ее мы рассмофим более подробно.

Под цветовым тоном (Н - Hue) понимается свет с доминирующей длиной волны и для его описания обычно используется, собственно, название цвета, например, синий или желтый. В графической интерпретации этой модели каждый цвет занимает определенное место на окружности и описывается углом в диапазоне 0—60. В положении 0 находится красный цвет, 120 - зеленый цвет, 240 - синий (это первичные цвета). Вторичные цвета находятся между ними. Дополнительные цвета находятся на диаметрально противоположных сторонах цветового круга. При их смешении образуется черный цвет (при печати красками) или белый (при излучении на мониторе). Это максимально контрастные цвета и действуют они на глаз раздражающе.

Цвета, равноотстоящие друг от друга, образуют триады, дающие гармоничное сочетание цветов и насыщенную оттенками палитру. Однако понятие цветового тона не дает полного описания цвета. Кроме доминирующей длины волны, в формировании цвета участвуют и другие длины волн. Соотношение между основной, доминирующей длиной волны и всеми остальными длинами волн, образующими "серые вкрапления", называется насыщенностью. Его значение изменяется от 0 % (серый цвет) в центре круга до 100 % (полностью насыщенный) на окружности.

Третий параметр - яркость - никоим образом не влияет на цветность, но от нее зависит, как сильно цвет будет восприниматься глазом, т.е. яркость характеризует интенсивность, с которой энергия света воздействует на рецепторы глаза. При нулевой яркости мы не увидим ничего, и любой цвет будет восприниматься как черный, а максимальная яркость вызывает ощущение ослепительно белого цвета. Величина яркости также измеряется в процентах от 0е (черный) до 100 (белый). Данная компонента является нелинейной, что соответствует природе глаза.

Модель HSB носит абстрактный характер, т.к. ее компоненты на практике измерить невозможно. Чаще всего компоненты модели получают путем математического пересчета измеренных значений RGB-модели. Как следствие, в наследство от RGB-модели она получает и ограниченное цветовое пространство. Кроме того, яркость и цветовой тон не являются полностью независимыми параметрами, т.к. значительное изменение яркости влияет на изменение цветового тона, что приводит к нежелательным эффектам в виде цветовых отливов (сдвигов). Вместе с тем HSB-модель обладает двумя важными преимуществами: большей аппаратной независимостью (по сравнению с двумя предыдущими моделями) и более простым и интуитивно понятным механизмом управления цветом.